Paper Reference(s)

6664/01 **Edexcel GCE**

Core Mathematics C2

Advanced Subsidiary

Friday 24 May 2013 – Morning

Time: 1 hour 30 minutes

Materials required for examination

Mathematical Formulae (Pink)

Items included with question papers

Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C2), the paper reference (6664), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

There are 10 questions in this question paper. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

1. The first three terms of a geometric series are

18, 12 and p

respectively, where p is a constant.

Find

(a) the value of the common ratio of the series,

(1)

(b) the value of p,

(1)

(c) the sum of the first 15 terms of the series, giving your answer to 3 decimal places.

(2)

2. (a) Use the binomial theorem to find all the terms of the expansion of

$$(2+3x)^4$$
.

Give each term in its simplest form.

(4)

(b) Write down the expansion of

$$(2-3x)^4$$

 $f(x) = 2x^3 - 5x^2 + ax + 18$

in ascending powers of x, giving each term in its simplest form.

(1)

3.

Given that (x - 3) is a factor of f(x),

(a) show that a = -9,

where a is a constant.

(2)

(b) factorise f(x) completely.

(4)

Given that

$$g(y) = 2(3^{3y}) - 5(3^{2y}) - 9(3^y) + 18,$$

(c) find the values of y that satisfy g(y) = 0, giving your answers to 2 decimal places where appropriate.

(3)

1	v –	5
7.	<i>y</i> –	${(x^2+1)}$

(a) Copy and complete the table below, giving the missing value of y to 3 decimal places.

х	0	0.5	1	1.5	2	2.5	3
у	5	4	2.5		1	0.690	0.5
							(1)

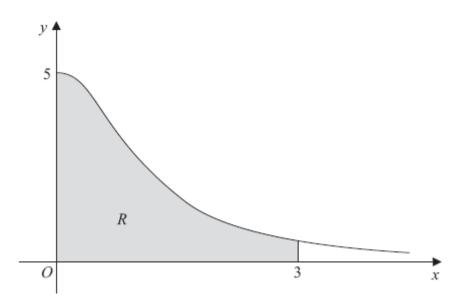


Figure 1

Figure 1 shows the region R which is bounded by the curve with equation $y = \frac{5}{(x^2 + 1)}$, the x-axis and the lines x = 0 and x = 3.

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate value for the area of R. (4)

(c) Use your answer to part (b) to find an approximate value for

$$\int_0^3 4 + \frac{5}{(x^2 + 1)} \, \mathrm{d}x,$$

giving your answer to 2 decimal places.

(2)



Figure 2

Figure 2 shows a plan view of a garden.

The plan of the garden *ABCDEA* consists of a triangle *ABE* joined to a sector *BCDE* of a circle with radius 12 m and centre *B*.

The points A, B and C lie on a straight line with AB = 23 m and BC = 12 m.

Given that the size of angle ABE is exactly 0.64 radians, find

(a) the area of the garden, giving your answer in m², to 1 decimal place,

(4)

(b) the perimeter of the garden, giving your answer in metres, to 1 decimal place.

(5)

6.

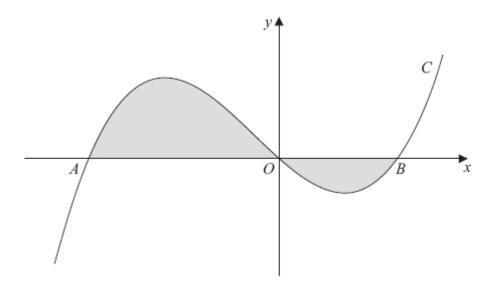


Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$y = x(x+4)(x-2).$$

The curve C crosses the x-axis at the origin O and at the points A and B.

(a) Write down the x-coordinates of the points A and B.

(1)

The finite region, shown shaded in Figure 3, is bounded by the curve *C* and the *x*-axis.

(b) Use integration to find the total area of the finite region shown shaded in Figure 3.

(7)

7. (i) Find the exact value of x for which

$$\log_2(2x) = \log_2(5x+4) - 3. \tag{4}$$

(ii) Given that

$$\log_a y + 3 \log_a 2 = 5$$
,

express y in terms of a.

Give your answer in its simplest form.

(3)

8. (i) Solve, for $-180^{\circ} \le x < 180^{\circ}$,

$$\tan(x - 40^{\circ}) = 1.5$$
,

giving your answers to 1 decimal place.

(3)

(ii) (a) Show that the equation

$$\sin \theta \tan \theta = 3 \cos \theta + 2$$

can be written in the form

$$4\cos^2\theta + 2\cos\theta - 1 = 0.$$
 (3)

(b) Hence solve, for $0 \le \theta < 360^{\circ}$,

$$\sin \theta \tan \theta = 3 \cos \theta + 2$$
,

showing each stage of your working.

(5)

9. The curve with equation

$$y = x^2 - 32\sqrt{x} + 20, \quad x > 0,$$

has a stationary point P.

Use calculus

(a) to find the coordinates of P,

(6)

(b) to determine the nature of the stationary point P.

(3)

10.

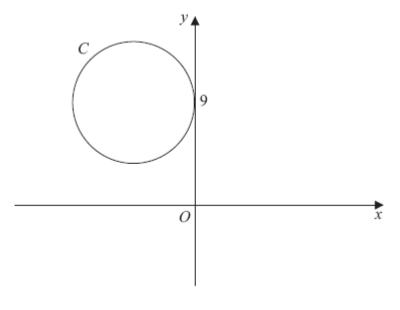


Figure 4

The circle C has radius 5 and touches the y-axis at the point (0, 9), as shown in Figure 4.

(a) Write down an equation for the circle C, that is shown in Figure 4.

(3)

A line through the point P(8, -7) is a tangent to the circle C at the point T.

(b) Find the length of PT.

(3)

TOTAL FOR PAPER: 75 MARKS

END

Question Number	Scheme	Marks
1. (a)	$\left\{r=\right\}\frac{2}{3}$	B1 (1)
(b)	$\{p=\}$ 8	B1 cao
(c)	$\{r = \} \frac{2}{3}$ $\{p = \} 8$ $\{S_{15} = \} \frac{18(1 - (\frac{2}{3})^{15})}{1 - \frac{2}{3}}$	(1) M1
	${S_{15} = 53.87668} \Rightarrow S_{15} = \text{awrt } 53.877$	A1
		(2) [4]
	Notes for Question 1	
(a)	B1: Accept $\frac{12}{18}$, 0.6 or 0.6 recurring, or even 0.667 (3sf) but not 0.6 or 0.67	
(b)	B1: accept 8 only	
(c)	M1: Applies this formula $S_{15} = \frac{18(1 - (\text{their } r)^{15})}{1 - (\text{their } r)}$, can be implied by their answer. For the	is mark
	they may use any value for r except $r = 1$ or $r = 0$ (even 3/2 or -6 may be used) A1: Answers which round to 53.877	_
Alternative method for (c)	M1: (Adding terms is an unlikely method for this question) Need to see 15 terms listed as 18+12+0.06165877 or can be implied by correct answer	
	A1: awrt 53.877 Answer only : 53.9 is M0A0 with no working, but 53.877 with no working is M1A1	

Question Number	Scheme	Marks				
	$(2+3x)^4$ - Mark (a) and (b) together					
2. (a)	$2^{4} + {}^{4}C_{1}2^{3}(3x) + {}^{4}C_{2}2^{2}(3x)^{2} + {}^{4}C_{3}2^{1}(3x)^{3} + (3x)^{4}$					
	First term of 16	B1				
	$\left({}^{4}C_{1} \times \times x \right) + \left({}^{4}C_{2} \times \times x^{2} \right) + \left({}^{4}C_{3} \times \times x^{3} \right) + \left({}^{4}C_{4} \times \times x^{4} \right)$	M1				
	$= (16 +) 96x + 216x^{2} + 216x^{3} + 81x^{4}$ Must use Binomial – otherwise A0, A0	A1 A1				
(b)	$(2-3x)^4 = 16 - 96x + 216x^2 - 216x^3 + 81x^4$	(4) B1ft (1) 5				
Alternative method (a)	$(2+3x)^4 = 2^4 (1+\frac{3x}{2})^4$					
	$2^{4} \left(1 + {}^{4}C_{1} \left(\frac{3x}{2}\right) + {}^{4}C_{2} \left(\frac{3x}{2}\right)^{2} + {}^{4}C_{3} \left(\frac{3x}{2}\right)^{3} + \left(\frac{3x}{2}\right)^{4}\right)$					
	Scheme is applied exactly as before					
(a)	Notes for Question 2 B1: The constant term should be 16 in their expansion					
(a)	M1: Two binomial coefficients must be correct and must be with the correct power of x . Acc	ent				
	4C_1 or ${4 \choose 1}$ or 4 as a coefficient, and 4C_2 or ${4 \choose 2}$ or 6 as another Pascal's triangle may be					
	used to establish coefficients.					
	A1: Any two of the final four terms correct (i.e. two of $96x + 216x^2 + 216x^3 + 81x^4$) in ex	pansion				
	following Binomial Method.					
	A1: All four of the final four terms correct in expansion. (Accept answers without + signs, callisted with common or expansion of special lines)	ın be				
(b)	listed with commas or appear on separate lines) B1ft: Award for correct answer as printed above or ft their previous answer provided it has	five				
(2)	terms ft and must be subtracting the x and x^3 terms	1110				
	Allow terms in (b) to be in descending order and allow $+-96x$ and $+-216x^3$ in the series. (According to the series of the se	ept				
	answers without + signs, can be listed with commas or appear on separate lines)					
	e.g. The common error $2^4 + {}^4C_12^33x + {}^4C_22^23x^2 + {}^4C_32^13x^3 + 3x^4 = (16) + 96x + 72x^2 + 24x^2 + 24x$	$4x^3 + 3x^4$				
	would earn B1, M1, A0, A0, and if followed by = $(16) - 96x + 72x^2 - 24x^3 + 3x^4$ gets E	31ft so				
	3/5					
	Fully correct answer with no working can score B1 in part (a) and B1 in part (b). The question stated use the Binomial theorem and if there is no evidence of its use then M mark and hence A marks cannot be earned. Squaring the bracket and squaring again may also earn B1 M0 A0 A0 B1 if correct Omitting the final term but otherwise correct is B1 M1 A1 A0 B0ft so 3/5 If the series is divided through by 2 or a power of 2 at the final stage after an error or omission					
	resulting in all even coefficients then apply scheme to series before this division and ignore s work (isw)	ubsequent				

Question Number	Scheme		Marks		
3. (a)	Either (Way 1): Attempt $f(3)$ or $f(-3)$	Or (Way 2): Assume $a = -9$ and attempt $f(3)$ or $f(-3)$	M1		
	$f(3) = 54 - 45 + 3a + 18 = 0 \implies 3a = -27 \implies a = -9 *$	f(3) = 0 so (x - 3) is factor	A1 * cso (2)		
	Or (Way 3): $(2x^3 - 5x^2 + ax + 18) \div (x - 3) = 2x^2 + px$ is an expression in terms of a	+q where p is a number and q	M1		
	Sets the remainder $18+3a+9=0$ and solves to give $a=0$	= -9	A1* cso (2)		
(b)	Either (Way 1): $f(x) = (x-3)(2x^2 + x - 6)$ $= (x-3)(2x-3)(x+2)$		M1A1 M1A1 (4)		
	Or (Way 2) Uses trial or factor theorem to obtain $x = -2$ uses trial or factor theorem to obtain both $x = -2$ and $x = 2$. Puts three factors together (see notes below) Correct factorisation: $(x - 3)(2x - 3)(x + 2)$ or $(3 - x)(3 - 2(x - 3)(x - \frac{3}{2})(x + 2)$ oe	3/2	M1 A1 M1 A1 (4)		
	Or (Way 3) No working three factors $(x-3)(2x-3)(x-3)$	+ 2) otherwise need working	M1A1M1A1		
(c)	${3^y = 3 \Rightarrow} \underline{y = 1}$ or $g(1) = 0$	<u> </u>	B1		
	${3^y = 1.5 \Rightarrow \log(3^y) = \log 1.5 \text{ or } y = \log_3 1.5}$		M1		
	${y=0.3690702} \Rightarrow y = \text{awrt } 0.37$		A1 (3) [9]		
	Notes for Question 3				
(a)	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers	=			
(b)	A1 for applying f (3) correctly , setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or div. (or equivalent such as QED or a tick). 1 st M1: attempting to divide by $(x - 3)$ leading to a 3TQ by	9) Note that the answer is given in ision they must state $(x-3)$ is a factorization with the correct term, usu	part (a). tor for A1 nally $2x^2$.		
	(Could divide by $(3-x)$, in which case the quadratic would begin $-2x^2$.) This may be done by a various of methods including long division, comparison of coefficients, inspection etc. 1st A1: usually for $2x^2 + x - 6$ Credit when seen and use isw if miscopied 2nd M1: for a <i>valid*</i> attempt to factorise their quadratic (* see notes on page 6 - General Principles for Core Mathematics Marking section 1) 2nd A1 is cao and needs all three factors together. Ignore subsequent work (such as a solution to a quadratic equation.) NB: $(x-3)(x-\frac{3}{2})(x+2)$ is M1A1M0A0, $(x-3)(x-\frac{3}{2})(2x+4)$ is M1A1M1A1				
(c)	$2(x-3)(x-\frac{3}{2})(x+2)$ is M1A1M1A1. B1: $y=1$ seen as a solution – may be spotted as answer – M1: Attempt to take logs to solve $3^y=\alpha$ or even $3^{ky}=\alpha$, bu root of $f(x)=0$ (ft their factorization) A1: for an answer that rounds to 0.37. If a third answer is lose final A mark	t not $6^y = \alpha$ where $\alpha > 0$ and $\alpha \neq 3$	3 & was a		

Question Number					Scheme					Marks
4.	X	0	0.5	1	1.5	2	2.5	3		
7.	у	5	4	2.5	1.538	1	0.690	0.5	_	
(a)	$\begin{cases} At \ x = 1 \end{cases}$.5, y = 1	.538 (only))						B1 cao
										[1]
(b)	1									[1]
	$\frac{1}{2} \times 0.5$;									B1 oe
	{5-	+0.5+2(4 + 2.5 + t	neir 1.538	+ 1 + 0.690)} .538 + 1 + 0.69		For structu	<u>re of </u> {	};	M1 <u>A1ft</u>
	$\frac{1}{2} \times 0.5 \times $	(5+0.5)	+2(4+2	5 + their 1	-538 + 1 + 0.69	$\{00\}$	(24.956) = 0	6.239 } = av	vrt 6.24	A1
		(()	((4	`	,		[4]
										ניין
(c)	Adds Are	a of Recta	ingle or fir	st integral	$= 3 \times 4$ or [$4x\big]_0^3$ to pr	evious ans	wer		M1
	So require	ed estimat	$e = {"6.23}$	9" + 12 =	"18.239"} = "a	wrt 18.24	" (or 12 + p	revious ans	swer).	A1ft
	N.B. 7×4	1 + previou	ıs answer i	s M0A0 (added 4 seven	times beca	ause 7 num	bers in table	e)	[2]
					N. 4 C (<u> </u>				7
(a)	B1: 1.538	<u> </u>			Notes for (Question 4	1			
(b)			5 or $\frac{1}{4}$ or 6	equivalent						
	M1: requi	ires the co	rrect {}	bracket s	tructure. It ne	eds the fir	st bracket to	contain fi	rst y value	plus last
	y value an	nd the seco	ond bracke	t to be mu	ltiplied by 2 ar	nd to be th	ne summatio	on of the re	maining y	values in
					he only mistak nd the M mark		-			
		-	-	_	brackets are x			_	ited term re	micits the
	A1ft: for t	the correct	t bracket {	} follo	owing through	candidate'	s y value fo	ound in part	(a).	
			ch rounds	,						
	_	_		used: B1	for 0.25, M1	for $1/2 h(a$	+ <i>b</i>) used :	5 or 6 times	s (and A1ft	if it is all
		Then A1 a ase: Brack		ake 0.25×	(5+0.5)+2(-6.5)	4 + 2.5 + t	heir 1 538 +	- 1 + 0 690)	scores R1	M1 A0
	_		_		the calculation			/		
	given). A	n answer o	of 20.831 u	sually inc	licates this erro	or.		•		
(c)		_			egral of previous geometry to fi		_	-	ntegrating 4	4
	A1ft: for	12 + answ	er to (b)			_				
Alternative					(b)- using the					
method	Get: M1 f	for "their	$\frac{1}{4}$ "× $\left\{9+4.\right\}$	5+2(8+6)	6.5 + their 5.53	38 + 5 + 4.	$\frac{690)}{}$ = (str	ucture mus	t be correct	t – allow
(c)	one copyi	•	•							
	And A1ft	: for awrt	18.24 (or	12 + previ	ious answer).					

Question Number	Scheme	Marks			
	Mark (a) and (b) together.				
5. (a)	Usually answered in radians: Uses either $\frac{1}{2}ab\sin(\text{angle})$ or $\frac{1}{2}(12)^2(\text{angle})$ or both	M1			
	Area = $\frac{1}{2}$ (23)(12) sin 0.64 or $\frac{1}{2}$ (12) ² (π – 0.64) {= 82.41297091 or 180.1146711}	A1			
	Area = $\frac{1}{2}$ (23)(12)sin 0.64 + $\frac{1}{2}$ (12) ² (π – 0.64) {= 82.41297091 + 180.1146711}	A1			
	${\text{Area} = 262.527642} = \text{awrt } 262.5 \text{ (m}^2{\text{)}} \text{ or } 262.4 \text{(m}^2{\text{)}} \text{ or } 262.6 \text{ (m}^2{\text{)}}$	A1 (4)			
(b)	$CDE = 12 \times (angle), = 12(\pi - 0.64) \{ \Rightarrow CDE = 30.01911 \}$	M1, A1			
	$AE^2 = 23^2 + 12^2 - 2(23)(12)\cos(0.64) \Rightarrow AE^2 = \text{or } AE = $ { $AE = 15.17376$ }	M1			
	Perimeter = 23 + 12 + 15.17376 + 30.01911	M1			
	= 80.19287 = awrt $80.2 $ (m)	A1			
		(5) [9]			
	Notes for Question 5				
(a)	M1: uses either area of triangle formula as given in mark scheme, or area of sector or both (mimplied by answer)	nay be			
	A1: one correct area expression (with correct angle used) $\frac{1}{2}(23)(12)\sin 0.64$ or $\frac{1}{2}(12)^2(\pi -$	0.64) or			
	see awrt 82.4 or awrt 180 (180 may be split as 226.2(semicircle) minus 46.1(small sector)) A1: two correct area expressions (with correct angles) added together (allow 2.5 as implying $\pi - 0.64$) or see awrt 82.4 + awrt 180 (or 226 - 46)				
a >	A1: answers which round to 262.5 or 262.4 or 262.6				
(b)	1^{st} M1 for attempt to use $s = r \theta$ (any angle) 1^{st} A1 for $\pi - 0.64$ in the formula (or 2.5)				
	2^{nd} M1: Uses correct cosine rule to obtain AE or AE^2 (this may appear in part (a))				
	3^{rd} M1(independent): Perimeter = $23 + 12 + \text{their } AE + \text{their } CDE$				
	2 nd A1: awrt 80.2 (ignore units – even incorrect units)				
Degrees	1 anglein degrees				
(a)	Uses either $\frac{1}{2}ab\sin(\text{angle})$ or $\frac{\text{angle in degrees}}{360} \times \pi(12)^2$ or both for M1				
	Area = $\frac{1}{2}$ (23)(12) sin 36.7 or $\frac{(180-36.7)}{360} \times \pi (12)^2 \left\{ = awrt \ 82.4 \ or \ 180 \right\}$ A1				
	Area = $\frac{1}{2}$ (23)(12) sin 36.7 + $\frac{(180-36.7)}{360}$ × π (12) ² {= awrt 82.4 + 180} A1				
<i>a</i> :	Final mark as before				
(b)	$CDE = \frac{\text{Angle in degrees}}{360} \times 24\pi, = \frac{180 - 36.7}{360} \times 24\pi \{ \Rightarrow CDE = 30.01268 \} $ M1, A1				
	Final three marks as before				

Question Number	Scheme	Marks
6. (a)	Seeing -4 and 2.	B1
(b)	$x(x+4)(x-2) = \underline{x^3 + 2x^2 - 8x}$ or $\underline{x^3 - 2x^2 + 4x^2 - 8x}$ (without simplifying)	(1) <u>B1</u>
	$\int (x^3 + 2x^2 - 8x) dx = \frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2} \{ + c \} \qquad \text{or } \frac{x^4}{4} - \frac{2x^3}{3} + \frac{4x^3}{3} - \frac{8x^2}{2} \{ + c \}$	M1A1ft
	$\left[\frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2} \right]_{-4}^{0} = (0) - \left(64 - \frac{128}{3} - 64 \right) \text{ or } \left[\frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2} \right]_{0}^{2} = \left(4 + \frac{16}{3} - 16 \right) - (0)$	dM1
	One integral = $\pm 42\frac{2}{3}$ (42.6 or awrt 42.7) or other integral = $\pm 6\frac{2}{3}$ (6.6 or awrt 6.7)	A1
	Hence Area = "their $42\frac{2}{3}$ " + "their $6\frac{2}{3}$ " or Area = "their $42\frac{2}{3}$ " - "-their $6\frac{2}{3}$ "	dM1
	$=49\frac{1}{3} \text{ or } 49.3 \text{ or } \frac{148}{3} (\text{NOT} - \frac{148}{3})$	A1
	(An answer of $=49\frac{1}{3}$ may not get the final two marks – check solution carefully)	(7)
		[8]
(a)	Notes for Question 6 B1: Need both -4 and 2. May see $(-4,0)$ and $(2,0)$ (correct) but allow $(0,-4)$ and $(0,2)$ or $A=-4$, B indeed any indication of -4 and 2 – check graph also	= 2 or
(b)	B1: Multiplies out cubic correctly (terms may not be collected, but if they are, mark collected term M1: Tries to integrate their expansion with $x^n \to x^{n+1}$ for at least one of the terms A1ft: completely correct integral following through from their CUBIC expansion (if only quadrat quartic this is A0) dM1: (dependent on previous M) substituting EITHER -a and 0 and subtracting either way round similarly for 0 and b. If their limits –a and b are used in ONE integral, apply the Special Case A1: Obtain either $\pm 42\frac{2}{3}$ (or 42.6 or awrt 42.7) from the integral from -4 to 0 or $\pm 6\frac{2}{3}$ (6.6 or awrt from the integral from 0 to 2; NO follow through on their cubic (allow decimal or improper equivalent and b) is which will be M0A0. dM1 (depends on first method mark) Correct method to obtain shaded area so adds two positive numbers (areas) together or uses their positive value minus their negative value, obtained from the separate definite integrals. A1: Allow 49.3, 49.33, 49.333 etc. Must follow correct logical work with no errors seen. For full marks on this question there must be two definite integrals, from -4 to 0 and from 0 to 2, to the evaluations for 0 may not be seen. (Trapezium rule gets no marks after first two B marks)	or OR below. a 6.7) alents ks, e wo
(b)	Special Case: one integral only from –a to b: B1M1A1 available as before, then $\left[\frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2}\right]_{-4}^2 = (4 + \frac{16}{3} - 16) - \left(64 - \frac{128}{3} - 64\right) = -6\frac{2}{3} + 42\frac{2}{3} = dM1 for correct use of the matter of the m$	of their

Question Number	Scheme	Marks		
7. (i) Method 1	$\log_2\left(\frac{2x}{5x+4}\right) = -3 \text{or } \log_2\left(\frac{5x+4}{2x}\right) = 3, \text{ or } \log_2\left(\frac{5x+4}{x}\right) = 4 \text{ (see special case 2)}$	M1		
	$\left(\frac{2x}{5x+4}\right) = 2^{-3} \text{ or } \left(\frac{5x+4}{2x}\right) = 2^{3} \text{ or } \left(\frac{5x+4}{x}\right) = 2^{4} \text{ or } \left(\log_{2}\left(\frac{2x}{5x+4}\right)\right) = \log_{2}\left(\frac{1}{8}\right)$	M1		
	$16x = 5x + 4 \implies x =$ (depends on previous Ms and must be this equation or equivalent)	dM1		
	$x = \frac{4}{11}$ or exact recurring decimal $0.\dot{3}\dot{6}$ after correct work	A1 cso (4)		
7(i)	$\log_2(2x) + 3 = \log_2(5x + 4)$			
Method 2	So $\log_2(2x) + \log_2(8) = \log_2(5x + 4)$ (3 replaced by $\log_2 8$)	2 nd M1		
	Then $\log_2(16x) = \log_2(5x + 4)$ (addition law of logs)	1 st M1		
	Then final M1 A1 as before	dM1A1		
(ii)	$\log_a y + \log_a 2^3 = 5$	M1		
	$\log_a 8y = 5$ Applies product law of logarithms.	dM1		
	$y = \frac{1}{9}a^5$	Alcao		
	8	(3)		
		[7]		
(*)	Notes for Question 7	<u> </u>		
(i)	1^{st} M1: Applying the subtraction or addition law of logarithms correctly to make two log terms in x into one log term in x			
	2^{nd} M1: For RHS of either 2^{-3} , 2^{3} , 2^{4} or $\log_{2}\left(\frac{1}{8}\right)$, $\log_{2}8$ or $\log_{2}16$ i.e. using connection between			
	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{rd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of $4/11$ with no suspect log work preceding this.			
(ii)	M1: Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$			
	dM1: (should not be following M0) Uses addition law of logs to give $\log_a 2^3 y = 5$ or $\log_a 8y = 5$			
(i)	Special case 1: $\log_2(2x) = \log_2(5x+4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x+4)} = -3 \Rightarrow \frac{2x}{5x+4} = 2^{-3} \Rightarrow x = \frac{2}{10}$	$\frac{4}{1}$ or		
	$\log_2(2x) = \log_2(5x+4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x+4)} = -3 \Rightarrow \log_2\frac{2x}{5x+4} = -3 \Rightarrow \frac{2x}{5x+4} = 2^{-3} \Rightarrow x = -3 \Rightarrow \frac{2x}{5x+4} = 2^{-3} \Rightarrow $	$\frac{4}{11}$ each		
	attempt scores M0M1M1A0 – special case			
	Special case 2:			
	$\log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \log_2 2 + \log_2 x = \log_2(5x + 4) - 3$, is M0 until the two log terms	s are		
	combined to give $\log_2\left(\frac{5x+4}{x}\right) = 3 + \log_2 2$. This earns M1			
	Then $\left(\frac{5x+4}{x}\right) = 2^4$ or $\log_2\left(\frac{5x+4}{x}\right) = \log_2 2^4$ gets second M1. Then scheme as before.			

Question Number	Scheme	Marks		
8. (i)	$(\alpha = 56.3099)$			
	$x = {\alpha + 40 = 96.309993} = $ awrt 96.3	B1		
	$x - 40^{\circ} = -180 + "56.3099"$ or $x - 40^{\circ} = -\pi + "0.983"$	M1		
	$x = \{-180 + 56.3099 + 40 = -83.6901\} = $ awrt -83.7	A1		
		(3)		
(ii)(a)	$\sin\theta \left(\frac{\sin\theta}{\cos\theta}\right) = 3\cos\theta + 2$	M1		
	$\left(\frac{1-\cos^2\theta}{\cos\theta}\right) = 3\cos\theta + 2$	dM1		
	$1 - \cos^2 \theta = 3\cos^2 \theta + 2\cos \theta \implies 0 = 4\cos^2 \theta + 2\cos \theta - 1$	A1 cso *		
		(3)		
(b)	$\cos \theta = \frac{-2 \pm \sqrt{4 - 4(4)(-1)}}{8}$			
		M1		
	or $4(\cos\theta \pm \frac{1}{4})^2 \pm q \pm 1 = 0$, or $(2\cos\theta \pm \frac{1}{2})^2 \pm q \pm 1 = 0$, $q \neq 0$ so $\cos\theta =$			
	One solution is 72° or 144°, Two solutions are 72° and 144°	A1, A1		
	$\theta = \{72, 144, 216, 288\}$	M1 A1		
		(5) [11]		
	Notes for Question 8			
(i)	B1: 96.3 by any or no method M1: Takes 180 degrees from arctan (1.5) or from their "96.3" May be implied by A1. (Could be obtained by adding 180, then subtracting 360). A1: awrt -83.7 Extra answers: ignore extra answers outside range. Any extra answers in range lose final A mark (if earned) Working in radians $-$ could earn M1 for $x - 40^{\circ} = -\pi + "0.983"$ so B0M1A0			
(ii) (a)	M1: uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ or equivalent in equation (not just $\tan \theta = \frac{\sin \theta}{\cos \theta}$, with n argument)	0		
	dM1: uses $\sin^2 \theta = 1 - \cos^2 \theta$ (quoted correctly) in equation	. :		
	A1: completes proof correctly, with no errors to give printed answer*. Need at least three step and need to achieve the correct quadratic with all terms on one side and "=0"	s in proof		
(b)				
	M1: Attempts to solve quadratic by correct quadratic formula, or completion of the square. Factorisation attempts score M0. 1 st A1: Either 72 or 144, 2 nd A1: both 72 and 144 (allow 72.0 etc.) M1: 360 – "a previous solution" (provided that cos was being used) (not dependent on previous solution).	ıs M)		
	A1: All four solutions correct (Extra solutions in range lose this A mark, but outside range - ignore) (Premature approximation: e.g. 71.9, 144.1, 288.1 and 215.9 – lose first A1 then ft other angles) Do not require degrees symbol for the marks Special case: Working in radians			
	M1: as before, A1 for either $\theta = \frac{2}{5}\pi$ or $\theta = \frac{4}{5}\pi$ or decimal equivalents, and 2^{nd} A1: both			
	M1: $2\pi - \alpha_1$ or $2\pi - \alpha_2$ then A0 so 4/5			

Question Number	Scheme	Marks
9. (a)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \right\} 2x - 16x^{-\frac{1}{2}}$	M1 A1
	$2x - 16x^{-\frac{1}{2}} = 0 \implies x^{\frac{3}{2}} = , x^{-\frac{3}{2}} = $, or $2x - 16x^{-\frac{1}{2}}$ then squared then obtain $x^3 = [\text{or } 2x - 16x^{-\frac{1}{2}} = 0 \implies x = 4 \text{ (no wrong work seen)}]$	M1
	$(x^{\frac{3}{2}} = 8 \Rightarrow) x = 4$	A1
	$x = 4$, $y = 4^2 - 32\sqrt{4} + 20 = -28$ (ignore $y = 100$ as second answer)	M1 A1 (6)
(b)	$\left\{ \frac{d^2 y}{dx^2} = \right\} 2 + 8x^{-\frac{3}{2}}$	M1 A1
	$(\frac{d^2y}{dx^2} > 0 \Rightarrow) y$ is a minimum (there should be no wrong reasoning)	A1 (3) [9]
(b)	Alternative Method: Gradient Test: M1 for finding the gradient either side of their x -value from part (a). A1 for both gradients calculated correctly to 1 significant figure, then using < 0 and > 0 responded by use of sketch or table. (See appendix for gradient values. This is not ft their x) A1 states minimum needs M1A1 to have been awarded.	<u>pectively</u>
	Notes for Question 9	
(a)	1 st M1: At least one term differentiated correctly, so $x^2 \to 2x$, or $32\sqrt{x} \to 16x^{-\frac{1}{2}}$, or 20 - A1: This answer or equivalent e.g. $2x - \frac{16}{\sqrt{x}}$ 2 nd M1: Sets their $\frac{dy}{dx}$ to 0, and solves to give $x^{\frac{3}{2}} = $, $x^{-\frac{3}{2}} = $ or $x^3 = $ after correct squaring or	
	(NB $\left\{ \frac{d^2 y}{dx^2} = 0 \right\}$ so $2 + 8x^{-\frac{3}{2}} = 0$ is M0)	
	N.B. Common error: Putting derivative = 0 and merely obtaining $x = 0$ is M0A0, then M0A0 two marks. (The first two marks in (a) and marks for second derivative may be earned in par A1: $x = 4$ cao [$x = -4$ is A0 and $x = \pm 4$ is also A0]	rt (b).)
	3 rd M1: Substitutes their positive found x (NOT zero) into $y = x^2 - 32\sqrt{x} + 20$, $x > 0$.	hould
	follow attempting to set $\frac{dy}{dx} = 0$ and not setting $\frac{d^2y}{dx^2} = 0$	
(b)	A1: -28 cao (Does not need to be written as coordinates) M1: Attempts differentiation of their first derivative with at least one term differentiated cor Should be seen or referred to (in part (b)) in determining the nature of the stationary point. A1: Answer in scheme or equivalent A1: States minimum (Second derivative should be correct- can follow incorrect positive x. M1A1 to have been awarded- should not follow incorrect reasoning – (need not say	·
	$\frac{d^2y}{dx^2} > 0$ but should not have said $\frac{d^2y}{dx^2} = 0$ for example)	

Question Number	Scheme	Marks
10. (a)		
	Equation of form $(x \pm 5)^2 + (y \pm 9)^2 = k$, $k > 0$	M1
	Equation of form $(x - a)^2 + (y - b)^2 = 5^2$, with values for a and b	M1
	$(x+5)^2 + (y-9)^2 = 25 = 5^2$	A1
	P(8, -7). Let centre of circle = $X(-5, 9)$	(3)
(b)	$PX^2 = (8 - 5)^2 + (-7 - 9)^2$ or $PX = \sqrt{(8 - 5)^2 + (-7 - 9)^2}$	M1
	$(PX = \sqrt{425} \text{ or } 5\sqrt{17}) \qquad PT^2 = (PX)^2 - 5^2 \text{ with numerical } PX$	dM1
	$PT \left\{ = \sqrt{400} \right\} = 20$ (allow 20.0)	A1 cso
		(3) [6]
Alternative 2 for (a)	Equation of the form $x^2 + y^2 \pm 10x \pm 18y + c = 0$	M1
	Uses $a^2 + b^2 - 5^2 = c$ with their a and b or substitutes (0, 9) giving $+9^2 \pm 2b \times 9 + c = 0$	M1
	$x^2 + y^2 + 10x - 18y + 81 = 0$	A1
		(3)
Alternative	An attempt to find the point T may result in pages of algebra, but solution needs to reach	
2 for (b)	$(-8, 5)$ or $\left(\frac{-8}{17}, 11\frac{2}{17}\right)$ to get first M1 (even if gradient is found first)	M1
	M1: Use either of the correct points with $P(8, -7)$ and distance between two points	dM1
	formula A1: 20	Alcso
	A1. 20	(3)
Alternative 3 for (b)	Substitutes (8, -7) into circle equation so $PT^2 = 8^2 + (-7)^2 + 10 \times 8 - 18 \times (-7) + 81$	M1
	Square roots to give $PT = \sqrt{400} = 20$	dM1A1 (3)
	Notes for Question 10	
(a)	The three marks in (a) each require a circle equation – (see special cases which are no M1: Uses coordinates of centre to obtain LHS of circle equation (RHS must be r^2 or $k > 0$	·
(a)	positive value)	or a
	M1: Uses $r = 5$ to obtain RHS of circle equation as 25 or 5^2	
	A1: correct circle equation in any equivalent form	
	Special cases $(x \pm 5)^2 + (x \pm 9)^2 = (5^2)$ is not a circle equation so M0M0A0	
	Also $(x \pm 5)^2 + (y-9) = (5^2)$ And $(x \pm 5)^2 - (y \pm 9)^2 = (5^2)$ are not circles and gain MOM	(0A0
	But $(x-0)^2 + (y-9)^2 = 5^2$ gains M0M1A0	
(b)	M1: Attempts to find distance from their centre of circle to P (or square of this value). If t called PT and given as answer this is M0. Solution may use letter other than X , as centre w	
	labelled in the question. N.B. Distance from (0, 9) to (8, -7) is incorrect method and is M0, followed by M0A0.	
	dM1: Applies the subtraction form of Pythagoras to find PT or PT^2 (depends on previous mark for distance from centre to P) or uses appropriate complete method involving trigonomy. A1: 20 cso	

Question Number	Scheme				Marks
Aliter	Gradient Test Method:				
9. (b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 16x^{-\frac{1}{2}}$				
Way 2	Helpful table!				
	ī		1		
		x	$\frac{\mathrm{d}y}{\mathrm{d}x}$		
			dx		
		3	-3.2376		
		3.1	-2.88739		
		3.2	-2.54427		
		3.3	-2.20771		
		3.4	-1.87722		
		3.5	-1.55236		
		3.6	-1.23274		
		3.7	-0.918		
		3.8	-0.60783		
		3.9	-0.30191		
		4	0		
		4.1	0.298163		
		4.2	0.592799		
		4.3	0.884115		
		4.4	1.172299		
		4.5	1.457528		
		4.6	1.739962		
		4.7	2.01975		
		4.8	2.297033		
		4.9	2.571937		
		5	2.844582		